a-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease
نویسندگان
چکیده
The distribution and tempo of neuronal loss in Parkinson’s disease correlates poorly with the characteristic and more widely spread intracellular changes associated with the disease process (Lewy bodies and Lewy neurites). To determine early intracellular changes in regions where cell loss is most marked (dopaminergic A9 substantia nigra) versus regions with Lewy bodies but where cell loss is limited, we assessed 13 patients with definite Parkinson’s disease at various disease stages in comparison with controls. Using immunohistochemistry for a-synuclein, we confirmed the concentration of this protein in the soma of normal A9 neurons and in Lewy body pathology in brainstem catecholamine neurons in Parkinson’s disease. Analysis of the degree of cell loss in brainstem catecholamine cell groups revealed that only the A9 substantia nigra had consistent significant cell loss early in the disease course with greater A9 cell loss correlating with increasing disease duration. To assess the earliest intracellular changes differentiating neurons more likely to degenerate, pigmented A9 and A10 neurons with and without obvious pathology were targeted, cell size and pigment density measured, and intracellular changes in a-synuclein location and lipid components analysed at both the light and electron microscope levels. There were no changes observed in healthy A10 neurons in Parkinson’s disease compared with controls. Pigmented A9 neurons in later stages of degeneration with obvious Lewy body formation had a significant reduction in intracellular pigment, as previously described. In contrast, A9 neurons of normal morphological appearance and no characteristic pathology in Parkinson’s disease exhibited significantly increased pigment density associated with a concentration of a-synuclein to the lipid component of the pigment and a loss of associated cholesterol. These changes in vulnerable but apparently healthy A9 neurons occurred without any change in cell size or in the amount of intracellular pigment compared with controls. The increase in pigment density is consistent with previously reported increases associated with oxidation and iron loading, reactions known to precipitate a-synuclein. The selectivity of the changes observed in A9 nigral neurons suggests that these early intracellular changes predispose these neurons to more rapid cell loss in Parkinson’s disease. The increased concentration of neuronal a-synuclein and pigment in normal A9 neurons may already predispose these neurons to precipitate a-synuclein around pigment-associated lipid under oxidative conditions. Overall, these changes may trigger a cascade of events leading to larger intracellular aggregates of a-synuclein and the dispersement of protective pigment to precipitate cell death in Parkinson’s disease.
منابع مشابه
Residual substantia nigra neuromelanin in Parkinson’s disease is cross-linked to -synuclein
The pigmentation of substantia nigra pars compacta dopaminergic neurons is due to the presence of neuromelanin, an irregular macromolecular pigment belonging to the family of melanins. Depletion of neuromelanin in Parkinson’s disease is typically indicated by loss of brown color in this area. Unlike that from controls, the pigment extracted from substantia nigra of parkinsonian patients seems t...
متن کاملEffect of Lewy Bodies on Mitochondrial DNA Copy Numbers and Deletion Burden in Parkinson’s Disease Substantia nigra Neurons
Objective: Our objective was to evaluate mitochondrial DNA (mtDNA) gene copy numbers in substantia nigra neurons from post-mortem Parkinson’s Disease cases and determine if the presence of Lewy bodies (LBs) altered mtDNA copy numbers or changed apparent deletion of mtDNAs. Methods: We used laser capture micro dissection to isolate neuromelanin-containing cells with or without Lewy bodies from 6...
متن کاملNew face of neuromelanin.
The massive, early and relatively circumscribed death of the dopaminergic neurons of the substantia nigra in Parkinson's disease has not yet been adequately explained. The characteristic feature of this brain region is the presence of neuromelanin pigment within the vulnerable neurons. We suggest that neuromelanin in the Parkinson's disease brain differs to that in the normal brain. The interac...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملThe effect of simvastatin in prevention of histological changes of substantia nigra and behavioral abnormalities in an experimental model of Parkinson’s disease in rat
Background and Objective: Parkinson’s disease (PD) is a rather common neurological disorder in elders that is due to degeneration of dopaminergic neurons within mesencephalic substantia nigra pars compacta. With regard to protective and antioxidant effect of simvastatin, this study was conducted to evaluate its neuroprotective effect in an experimental model of PD. Materials and Methods: In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005